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We revisit Salmon’s ‘Dirac bracket projection’ approach to constructing generalized
semi-geostrophic equations. One of the obstacles to the method’s applicability is
that it leads to a sign-indefinite energy functional in the computational domain.
In some instances this can cause severe failure of the model. We demonstrate in
the simple context of shallow-water semi-geostrophy that the Hamiltonian remains
positive definite when the asymptotic expansion at the heart of this method is carried
to the next order. The resulting new model can be interpreted in the framework of
regularization by Lagrangian averaging, which is currently receiving much attention.

1. Introduction
In a series of articles, Salmon proposed new approximate models for nearly

geostrophic flow in a layer of shallow water (1985, 1988), and in a layer of stratified
fluid of finite depth (1996). The models were subsequently described from a more gen-
eral perspective by McIntyre & Roulstone (1996, 2001). Their derivation is an example
of variational asymptotics: all approximations are performed on the Lagrangian of
the parent fluid model before Hamilton’s principle is applied to yield new equations
of motion. One of the chief advantages of this approach is that preservation of time
and particle relabelling symmetries guarantees exact conservation of a new energy
and potential vorticity in the approximate system.

Salmon’s approximation consists of two steps. First, noting that the stationary
leading-order geostrophic balance defines a submanifold in phase space, he constrains
the full Lagrangian to this ‘slow manifold’. This step, however, destroys the canonical
coordinate structure of the variational formulation. The second step is therefore a
transformation back to simple canonical variables. This is feasible only approximately
to some order in the formal small parameter.

While built-in structure preservation is clearly an attractive feature, the conservation
laws of the new system may not necessarily be physically reasonable. In particular,
the energy may not be sign definite, which can destroy consistency of the evolution
with the underlying model assumptions, and have a serious impact on numerical
simulation, as has been observed by Shepherd & Ford (2001).

† Rupert Ford passed away on March 30, 2001, while this article was being prepared.
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The purpose of this paper is to demonstrate that loss of definiteness is not nec-
essarily associated with Salmon’s method. We show that by going to the next order
in the approximation of the transformation to canonical coordinates, positivity is
preserved. This is consistent with the idea that the transformed system should stay
asymptotically closer to the ‘slow manifold’ than the original system. We consider
only the shallow-water situation. The stratified case is much more subtle, and will be
considered in a forthcoming paper. Our basic idea, however, applies to the stratified
case as well.

The paper is laid out as follows. We first recall the shallow-water model and
sketch the nearly geostrophic large-scale approximation following the explanation
given in Salmon (1988). We then introduce new notation which allows us to more
systematically keep track of second-order quantities. The crucial point is that we
treat the change of coordinates as a flow with respect to the perturbation parameter,
and expand the Lagrangian as an asymptotic series in terms of the expansion of the
vector field generated by this flow. This setup was previously used in, and is indeed
inspired by, Marsden & Shkoller’s (2000, 2001) theory of Lagrangian averaging. The
computation in the main part of the paper retraces the steps of Salmon including
terms of second order in the Rossby number, thereby restoring definiteness to the
Hamiltonian. The paper concludes with the derivation of the associated evolution
equation, and a discussion of the larger context of the result.

2. Models for nearly geostrophic shallow water
We consider an infinitely extended layer of rotating shallow water whose horizontal

velocity u = u(x, t) and fluid depth h = h(x, t) is governed by the shallow-water
equations

∂tu+ u · ∇u+ f u⊥ + g ∇h = 0, (2.1a)

∂th+ ∇ · (hu) = 0, (2.1b)

where u⊥ = (−u2, u1), f is the Coriolis parameter, and g the acceleration due to gravity.
We assume that h approaches a constant, and u vanishes at infinity. For simplicity,
we consider only the case of constant Coriolis parameter, though we believe that the
calculation can be extended to the general case.

We are interested in nearly geostrophic flow, i.e. the case of small Rossby number

ε =
U

fL
� 1, (2.2)

and, as in Salmon (1985), small Burger number

B =
gH

f2L2
= ε, (2.3)

where H is the mean layer depth, U the horizontal velocity scale, and L the hori-
zontal geometric length scale. Then, assuming an advective time scale, the non-
dimensionalized shallow-water equations read

ε (∂tu+ u · ∇u) + u⊥ + ∇h = 0, (2.4a)

∂th+ ∇ · (hu) = 0. (2.4b)

Our goal is to construct a hierarchy of Hamiltonian balanced models using ε as a
formal expansion parameter. At the lowest order ε = 0, we have the geostrophic
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balance relation

ugeostrophic = ∇⊥h. (2.5)

Substituting (2.5) back into the continuity equation (2.4b) we see that the Eulerian
dynamics is stationary to leading order. More generally, we shall obtain equations of
motion of the form

∂th+ ∇⊥ · (φ∇h) = 0, (2.6)

where, up to terms of second order in ε,

φ = h+ 1
2
ε |∇h|2 + ε h ∆h+ ε2 h |Hess h|2 + ε2 Hess : (h2 Hess h); (2.7)

Hess denotes the Hessian acting on scalar functions as a matrix-valued second-order
differential operator, and the colon denotes contraction over two indices; in other
words, Hess : (h2 Hess h) = ∂ij(h

2 ∂ijh).
Truncated to first order, this is precisely Salmon’s (1985) large-scale semi-geostrophic

model. Moreover, the reduced models are Hamiltonian, as are the parent shallow-
water equations, with respect to the energy

H = 1
2

∫ [
h2 − ε h |∇h|2 + ε2 h2 |Hess h|2] dx. (2.8)

A simple computation shows that the negative first-order term is ‘squeezed’ in between
the zero and second order:

ε

∫
h |∇h|2 dx = − ε

2

∫
h2 ∆h dx 6

1

2

(∫
h2 dx

)1/2(
ε2
∫
h2 (∆h)2 dx

)1/2

6
1

4

∫
h2 dx+

ε2

4

∫
h2 (∆h)2 dx 6

1

4

∫
h2 dx+

ε2

4

∫
h2 |Hess h|2 dx.

(2.9)

Hence H is positive definite provided the layer depth is strictly positive. Since h is
an advected scalar, this only amounts to requiring that the initial data be consistent
with the underlying model hypotheses.

3. Variational approach to semi-geostrophic theory
The derivation of 2.6 is based on the observation that the full rescaled shallow-water

equations can be obtained via Hamilton’s principle from the Lagrangian

L(η, η̇) =

∫
(P + ε u) ◦ η · η̇ da− 1

2

∫
(ε |u|2 + h) ◦ η da, (3.1)

where η is the map from Lagrangian labels a to Eulerian particle positions x, P is
the two-dimensional ‘vector potential’ of the Coriolis parameter, i.e. ∇⊥ · P = f ≡ 1,
and ◦ denotes composition of maps so that, in particular, η̇ = u ◦ η.

By relating the Lagrangian phase-space coordinates η and η̇ to Hamiltonian canon-
ical variables p and q through the Legendre transform, which in our situation takes
the trivial form

(η, ε η̇) 7→ (q, p), (3.2)

we notice that the Lagrangian is of the form

L(η, η̇) =

∫
(P + p) · q̇ da−H(p, q), (3.3)
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and that Hamilton’s equations of motion can be written( −J −I
I 0

)(
q̇
ṗ

)
=

(
δH/δq
δH/δp

)
where J =

(
0 −1
1 0

)
. (3.4)

The matrix on the left is clearly symplectic.
Now the basic idea is to view the zero-order geostrophic balance (2.5), being of the

form

p = G(q), (3.5)

as defining a ‘slow manifold’ in phase space. In fact, when ε = 0 the dynamics on
this manifold is stationary. For ε > 0 small, we seek an approximate solution by
projecting the full dynamics onto the ‘slow manifold,’ i.e. we add (3.5) as a constraint
to the variational principle. This fits well into the Dirac theory of constraints – thus
the term Dirac bracket projection (Salmon 1988). Here the situation is even simpler:
the constraint is the graph of an operator, so we can simply insert (3.5) into the
Lagrangian (3.3).

An important consequence of the general theory is that the constrained system
again is Hamiltonian. It is not, however, in canonical form because p is no longer a
phase-space coordinate. Moreover, a transformation to canonical coordinates, albeit
known to exist, cannot easily be found. As a way out, Salmon noticed that it is possible
to pose an approximate transformation to canonical form that incurs errors only of
the same formal order as those introduced by the projection itself. Equivalently, we
can say that changing the slow manifold by a small amount enables us to find an
explicit transformation of the constrained system to canonical coordinates.

In the following we revisit the details of this construction, and demonstrate that by
keeping the transformation to canonical coordinates one order more accurate than
the projection, we preserve definiteness of the Hamiltonian.

4. The setup
Let uε denote the velocity in physical coordinates, and u the velocity in the new

semi-geostrophic coordinate system. We write the old, unconstrained Lagrangian in
this notation:

Lε =

∫
(P + ε uε) ◦ ηε · η̇ε da−Hε, (4.1)

Hε = 1
2

∫ (
ε |uε|2 + hε

) ◦ ηε da. (4.2)

The layer depth in physical coordinates, usually written hε = ∂a/∂xε, is the Jacobian
of the change from Eulerian to Lagrangian coordinates. In ‘fixed-slot’ notation which,
in our experience, is less prone to error, we write

h−1
ε ◦ ηε ≡ Jε = det∇ηε. (4.3)

The flow in each coordinate system has an associated vector field via

η̇ = u ◦ η, (4.4)

η̇ε = uε ◦ ηε. (4.5)

The change of coordinates can be expressed as a transformation:

ηε = ξε ◦ η. (4.6)
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At this stage all objects are still flow maps, and there is no truncation to some order
of ε yet. The crucial point is that we can regard ξε as a flow in ε, and associate with
it a vector field vε via

ξ′ε = vε ◦ ξε, (4.7)

where the prime denotes a derivative with respect to ε. The computations which
follow are more easily written in terms of the Eulerian vector fields u and v, so we
need to establish a few identities between derivatives of the diffeomorphisms and the
corresponding vector fields. Differentiating (4.7) with respect to t and ε, respectively,
gives

ξ̇
′
ε = v̇ε ◦ ξε + (∇vε) ◦ ξε ξ̇ε, (4.8)

ξ′′ε = v′ε ◦ ξε + (∇vε) ◦ ξε ξ′ε. (4.9)

Setting ε = 0 and using that, by definition, ξ ≡ ξ0 = id and therefore ξ̇ = 0, we obtain

ξ′ = v, (4.10)

ξ̇
′
= v̇, (4.11)

ξ′′ = v′ + ∇v v. (4.12)

(Quantities without subscript are taken to be evaluated at ε = 0.) Similarly, successive
differentiation of (4.6) gives

η′ε = ξ′ε ◦ η, (4.13)

η′′ε = ξ′′ε ◦ η, (4.14)

η̇′ε = ξ̇
′
ε ◦ η + (∇ξ′ε) ◦ η η̇, (4.15)

whence, setting ε = 0,

η′ = v ◦ η, (4.16)

η′′ = (v′ + ∇v v) ◦ η, (4.17)

η̇′ = (v̇ + ∇v u) ◦ η. (4.18)

We remark that, although we work explicitly in Euclidean coordinates, these expres-
sions could easily be written in intrinsic geometric notation.

5. Restriction to the constraint manifold
In the notation of the previous section, the constraint to the geostrophic manifold

is applied in the old, ε-indexed variables:

uε ◦ ηε = (∇⊥hε) ◦ ηε = (∇⊥h+ εw) ◦ η + O(ε2), (5.1)

where w is implicitly defined through the O(ε) terms in the expansion of (∇⊥hε) ◦ ηε.
As it turns out, we will never need to compute w explicitly, but we could certainly do
so. There are two terms in the Lagrangian in which substitution (5.1) occurs, namely

ε uε ◦ ηε · η̇ε = ε
(∇⊥h+ εw

) · (η̇ + ε η̇′
)

+ O(ε3)

= ε∇⊥h ◦ η · η̇ + ε2
(
w ◦ η · η̇ + ∇⊥h ◦ η · η̇′)+ O(ε3) (5.2)

and

ε |uε ◦ ηε|2 = ε |∇h ◦ η|2 + 2 ε2 (w · ∇⊥h) ◦ η + O(ε3). (5.3)
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6. Transformation of the Lagrangian
Consider the first term of the Lagrangian. As f is constant, second derivatives of

P vanish, and a straightforward Taylor expansion of P ◦ ηε about ε = 0 gives

P ◦ ηε = P ◦ η + ε (∇P) ◦ η η′ + 1
2
ε2 (∇P) ◦ η η′′ + O(ε3). (6.1)

Notice that in this and all following expressions, the multiplication vector times matrix
(no ·) takes precedence over the explicit dot product. Thus,

P ◦ ηε · η̇ε = P ◦ η · η̇ + ε (∇P) ◦ η η′ · η̇ + εP ◦ η · η̇′
+ 1

2
ε2 P ◦ η · η̇′′ + 1

2
ε2 (∇P) ◦ η η′′ · η̇ + ε2 (∇P) ◦ η η′ · η̇′ + O(ε3).

(6.2)

We can extract from this expression some full time derivatives which do not contribute
to the variational principle. For any vector w,

∂t(P ◦ η · w) = (∇P)T ◦ η w · η̇ + P ◦ η · ẇ, (6.3)

so that

P ◦ η · ẇ + (∇P) ◦ η w · η̇ =
(∇P − (∇P)T

) ◦ η w · η̇ + ∂t(P ◦ η · w)

= w⊥ · η̇ + ∂t(P ◦ η · w). (6.4)

Similarly, we compute, again under the assumption that f is constant (when f is
arbitrary, the additional terms we obtain do not combine in the same way),

∂t
(
(∇P) ◦ η η′ · η′) = (∇P)T ◦ η η′ · η̇′ + (∇P) ◦ η η′ · η̇′, (6.5)

so that

(∇P) ◦ η η′ · η̇′ = 1
2

(∇P − (∇P)T
) ◦ η η′ · η̇′ + 1

2
∂t
(
(∇P) ◦ η η′ · η′)

= 1
2
η′⊥ · η̇′ + 1

2
∂t
(
(∇P) ◦ η η′ · η′) . (6.6)

We now apply (6.4) with w = η′ and w = η′′ respectively, and (6.6) to rewrite (6.2) as

P ◦ ηε · η̇ε = P ◦ η · η̇ + ε η′⊥ · η̇ + ε ∂t(P ◦ η · η′) + 1
2
ε2 η′′⊥ · η̇

+ 1
2
ε2 ∂t(P ◦ η · η′′) + 1

2
ε2 η′⊥ · η̇′ + 1

2
ε2 ∂t

(
(∇P) ◦ η η′ · η′)+ O(ε3)

=
[
P · u+ ε u · v⊥ + 1

2
ε2
(
u · (v′ + ∇v v)⊥ + v⊥ · (v̇ + ∇v u))] ◦ η

+O(ε3) + Ḟ , (6.7)

where Ḟ is a total time derivative which does not contribute to the variational
principle, and will be dropped henceforth.

The potential energy term is easily expanded by noting that (4.6) and (4.7) combine
to η′ε = vε ◦ ηε, so that the Liouville theorem for the flow of vε reads

J ′ε = (∇ · vε) ◦ ηε Jε. (6.8)

After differentiating with respect to ε, setting ε = 0 yields the relations

J ′ = (∇ · v) ◦ η J, (6.9)

J ′′ =
[∇ · v′ + v · ∇∇ · v + (∇ · v)2

] ◦ η J. (6.10)

Thus,

Jε = J
[
1 + ε∇ · v + 1

2
ε2
(∇ · v′ + v · ∇∇ · v + (∇ · v)2

)] ◦ η + O(ε3). (6.11)
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This power series is easily inverted, and setting J−1 ≡ h ◦ η, we find

hε ◦ηε ≡ J−1
ε =

(
h
[
1− ε∇ · v − 1

2
ε2
(∇ · v′ + v · ∇∇ · v − (∇ · v)2

)])◦η+O(ε3). (6.12)

7. Canonical coordinates
For the new coordinates to be canonical, we require that the expanded Lagrangian

has the form

Lε =

∫
P ◦ η · η̇ da−Hε + O(ε3). (7.1)

This corresponds to keeping only the upper-left sub-matrix of the symplectic matrix
in (3.4), which itself is symplectic.

At order ε we therefore require that∫
(u · v⊥ + u · ∇⊥h) h dx = 0, (7.2)

so that it is sufficient to set

v = −∇h = u⊥ + O(ε). (7.3)

The last equality follows directly from a full expansion of the constraint (5.1). Notice
that v = u⊥ only in the limit when ε→ 0.

At the next order, we need∫ (
1
2
u · (v′ + ∇v v)⊥ + 1

2
v⊥ · (v̇ + ∇v u) + u · (w + v̇ + ∇v u)) h dx = 0. (7.4)

We can use (7.3) to express u and v in terms of h within the required order of accuracy.
Notice that the terms involving v̇ do not contribute, as∫

∇⊥h · ∇ḣ h dx = −
∫
ḣ
(
h∇ · ∇⊥h+ ∇h · ∇⊥h) da = 0. (7.5)

Therefore, a sufficient condition for (7.4) to hold is

(v′ + ∇∇h∇h)⊥ − ∇∇h∇⊥h+ 2w = 0, (7.6)

or
v′ = 2w⊥ − 2∇∇⊥h∇⊥h− ∆h∇h. (7.7)

We can now compute the expanded Hamiltonian up to order ε2, namely

Hε = H0 + εH1 + 1
2
ε2 H2 + O(ε3), (7.8)

where

H0 = 1
2

∫
h ◦ η da = 1

2

∫
h2 dx, (7.9)

H1 = 1
2

∫ (|∇h|2 + h∆h
) ◦ η da = − 1

2

∫
h |∇h|2 dx, (7.10)

and

H2 =

∫
2 (w · ∇⊥h) ◦ η da− 1

2

∫ [
h
(∇ · v′ + v · ∇∇ · v − (∇ · v)2

)] ◦ η da

=

∫
w · ∇⊥h2 dx−

∫
h2
[∇ · w⊥ − ∇∇⊥h : ∇⊥∇h− (∆h)2

]
dx

=

∫
h2 |Hess h|2 dx. (7.11)



294 R. Ford, S. J. A. Malham and M. Oliver

Altogether, the fully transformed Lagrangian up to order ε2 reads

L =

∫
P ◦ η · η̇ da−H (7.12a)

H = 1
2

∫ [
h2 − ε h |∇h|2 + ε2 h2 |Hess h|2] dx. (7.12b)

8. Equations of motion
Taking arbitrary variations of the flow map, we find

δ

∫
P ◦ η · η̇ da =

∫
[(∇P) ◦ η δη · η̇ + P ◦ η · δη̇] da

=

∫ [
((∇P)T − ∇P) u

] ◦ η · δη da

= −
∫
h u⊥ · δη ◦ η−1 dx. (8.1)

Moreover, for any function φ = φ(x)∫
φδh dx =

∫
h∇φ · δη ◦ η−1 dx. (8.2)

This last identity can be derived as follows. First note that

∇η⊥ : ∇⊥η = −2 det∇η, (8.3)

so that

−2 = h ◦ η ∇η⊥ : ∇⊥η. (8.4)

By taking the variation of this identity and after minor simplification we obtain

δh ◦ η = h2 ◦ η ∇η⊥ : ∇⊥δη − (∇h) ◦ η · δη. (8.5)

We can now insert this expression for δh into the left-hand side of (8.2), and integrate
by parts:∫

φδh dx =

∫ [
(hφ) ◦ η ∇η⊥ : ∇⊥δη −

(
φ
∇h
h

)
◦ η · δη

]
da

= −
∫ [

(∇(hφ)) ◦ η · ∇⊥η (∇η⊥)T δη +

(
φ
∇h
h

)
◦ η · δη

]
da. (8.6)

Since ∇⊥η (∇η⊥)T = −I det∇η = −I h−1 ◦ η, (8.2) is proved. We use this identity to
compute the variation of the transformed Hamiltonian. A direct computation using
integration by parts gives

δH =

∫
φδh dx =

∫
h∇φ · δη ◦ η−1 dx, (8.7)

where

φ = h+ 1
2
ε |∇h|2 + ε h ∆h+ ε2 h |Hess h|2 + ε2 Hess : (h2 Hess h). (8.8)

The variational principle δL = 0 then gives u = ∇⊥φ, so that the conservation-of-mass
equation reads

∂th+ ∇⊥ · (φ∇h) = 0. (8.9)
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The evolution clearly preserves h along particle paths. This can be viewed as a
conservation law for the potential vorticity:

q ◦ η =
1

h ◦ η =
1 + ∇⊥ugeostrophic

hε
◦ ηε + O(ε2), (8.10)

as is the case for Salmon’s (1985) model. Note that this conservation law does not
depend on the exact definition of φ, but only on the symplectic structure of the
resulting Hamilton system which has not been altered by going to second order in
the transformation. In fact, as has been noted by many authors, potential vorticity
conservation can be independently derived by using the particle relabelling symmetry
of the Hamiltonian (see, for example, Salmon 1996 or Bridges, Hydon & Reich 2001).

9. Discussion
By maintaining O(ε2) accuracy in the transformation to canonical coordinates

we have derived a new model for large-scale geostrophic flow that has a positive-
definite energy with respect to the coordinate system in which we compute. This is
generally important, because as soon as the different components of the energy have
opposite signs, none of them is a priori bounded even though the full Hamiltonian
is conserved. For example, numerical experiments performed by Shepherd & Ford
(2001) on a model for a single thermally active layer in a stratified ocean which
is closely related to the simpler shallow-water equations have shown that without
such a priori control rapid formation of small-scale structures occurs and is difficult
to control. We must note, however, that the particular situation we discuss in this
paper is special because even if we truncated the Hamiltonian at O(ε), the point-wise
conservation of h would imply conservation of H0, thereby constraining H1 as well.
For this reason we do not expect this particular new model to be drastically more
stable than Salmon’s (1985) model. Nonetheless, we believe that this work is useful
for several reasons.

1. The principle of recovering definiteness by including higher-order terms in an
asymptotic expansion is much more general. In particular, it can be applied to reduced
models of the primitive equations of ocean dynamics, which would cover the situation
discussed in Salmon (1996) and Shepherd & Ford (2001).

2. The introduction of sign-definite higher-order terms into the Hamiltonian is remi-
niscent of Hamiltonians corresponding to Lagrangian averaged Euler equations (also
known as Euler-α equations or equations of inviscid second-grade fluids), which have
been extensively discussed in recent years (Holm, Marsden & Ratiu 1998; Holm 1999;
Marsden & Shkoller 2000, 2001; Oliver & Shkoller 2001). The ideas developed there
may eventually lead to a more direct physical, as opposed to structural, interpretation
of the effect of our approximation.

3. Taking the transformation to order-ε2 accuracy may be philosophically correct:
if we accept the picture that the large-scale semi-geostrophic approximation is a
projection onto a slow phase-space manifold which is only accurate to first order, we
should be more accurate when seeking canonical coordinates on this slow manifold,
lest we risk introducing fast dynamics back into the system at the very order they
initially were removed.

4. Asymptotic models in the small Rossby number are, as far as scaling arguments
go, only valid for times of order one – much shorter than time scales of physical
interest. On the other hand, semi-geostrophic models in practice often perform ad-
equately over much longer intervals of time. While this general phenomenon is not
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fully understood, we propose a link to structure preservation in the geometric as well
as an analytic sense: Not only is the reduced model Hamiltonian, it also inherits
a modified definite energy law which should prove crucial, in the general case, for
rendering such models well posed.

5. The canonical coordinate theorem of McIntyre & Roulstone (1996, 2001) gives
a general necessary condition for relating the constraint velocity to the change of
variables on the slow manifold. Although their explicit example is – as in Salmon –
only a first-order ansatz for the change of variables, it will be interesting to see what
class of models one can obtain by performing our approach in their generality.

The authors thank the referees for the careful reading of the manuscript and
insightful comments. Part of this work was completed while M.O. was visiting Imperial
College and Heriot–Watt University on a London Mathematical Society Scheme 2
visitors grant.
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